Hugh Herr a perdu ses deux jambes lors d'un accident de montagne en 1982. Directeur du département de Biomécatronique au MIT Media Lab, il travaille depuis lors à l'élaboration de meilleures prothèses, analysant les déficiences des prothèses existentes et modélisant mathématiquement le fonctionnement de la cheville lors de la marche. Il porte ses propres prothèses qu'il décrit comme imitant la nature, reproduisant à l'identique les fonctions des chevilles, genoux et mollets biologiques.
Lors d'un "TED Talk" le mois dernier, Herr a fait une démonstration saisissante en faisant monter sur scène Adrianne Haslet-Davis, une danseuse professionnelle qui avait perdu une partie de sa jambe lors de l'attentat du marathon de Boston en 2013. Grâce à sa prothèse bionique, elle a pu danser une rumba en direct sur la scène.
La plupart de ces prothèses sont produites par la start-up de Hugh Herr, BiOM (créée en 2006 et originellement appelée iWalk). L'entreprise a procuré la première prothèse pied-mollet bionique à plus de 900 patients dans le monde depuis 2010, y compris 400 ancients combattants blessés au combat.
UN CREDO : LE BIOMIMÉTISME
Baptisée BiOM T2 System, la prothèse a été développée à l'origine par le groupe de recherche de Hugh Herr au MIT. Elle simule une cheville biologique et les muscles du mollet qui s'y connectent, permettant d'obtenir une démarche naturelle. Le système a connu plus de 20 versions successives, financées à hauteur de 50 millions de dollars par des subventions et du capital risque.
Elle utilise une "propulsion bionique" alimentée par batterie, couplée à deux microprocesseurs et six capteurs environnementaux qui ajustent la raideur, la position, la puissance déployée et le degré d'amortissement de la cheville plusieurs milliers de fois par seconde en deux points clés. Lors de l'impact du talon, le système contrôle la raideur de la cheville pour absorber le choc et propulser le tibia vers l'avant. Ensuite, des algorithmes génèrent de l'énergie en fonction du terrain pour propulser le porteur en avant.
Modèle de gestion des paramètres de la prothèse
Les prothèses sont adaptées à chaque patient à l'aide d'un logiciel spécialisé créé par les chercheurs, qui programme la rigidité et la puissance déployées à toutes les étapes de la marche. Ils appellent ce processus le "Personal Bionic Tuning" (réglage bionique personnel). Cela signifie qu'un patient s'acclimate souvent à sa prothèse en quelques minutes au lieu de quelques semaines.
A LA FRONTIÈRE DE LA ROBOTIQUE
La prothèse restaure la démarche naturelle, l'équilibre et la vitesse de marche, mais en absorbant les chocs et redistribuant l'énergie elle permet aussi de réduire les contraintes subies par les articulations des jambes et par le dos. Un détail critique car cela réduit fortement la probabilité d'apparition d'athrose dans les membres atteint par rapport aux prothèses mécaniques ou hydrauliques.
Un avantage chez les populations âgées notamment, qui, dans le cas d'une amputation, peuvent retrouver avec ces prothèses bioniques des capacités équivalentes à celles de jambes de jeunes adultes, limitant les problèmes musculosquelettiques liés à l'âge.
Hugh Herr pense de plus qu'améliorer la technologie utilisée par les prothèses pourrait conduire à terme à des innovations dans le domaine de la robotique. Des prothèses de bras, de jambes, de hanches... qui intégrées ensemble, pourraient former une plate-forme humanoïde complète. Mais Herr est résolumment tourné vers l'humain : les travaux actuels de son groupe au MIT se concentrent sur des membres bioniques qui peuvent être contrôlés par la pensée.
La présentation de Hugh Herr à la conférence TED peut être visionnée ci-dessous :
Pour rester informé, abonnez-vous à notre page Facebook ou Twitter.